New Convolutional Codes Derived from Algebraic Geometry Codes

نویسندگان

  • Francisco Revson F. Pereira
  • Giuliano G. La Guardia
  • Francisco Marcos de Assis
چکیده

In this paper, we construct new families of convolutional codes. Such codes are obtained by means of algebraic geometry codes. Additionally, more families of convolutional codes are constructed by means of puncturing, extending, expanding and by the direct product code construction applied to algebraic geometry codes. The parameters of the new convolutional codes are better than or comparable to the ones available in literature. In particular, a family of almost near MDS codes is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructions of MDS-convolutional codes

Maximum-distance separable (MDS) convolutional codes are characterized through the property that the free distance attains the generalized singleton bound. The existence of MDS convolutional codes was established by two of the authors by using methods from algebraic geometry. This correspondence provides an elementary construction of MDS convolutional codes for each rate k/n and each degree δ. ...

متن کامل

Asymptotically Good Convolutional Codes

In this paper, we construct new sequences of asymptotically good convolutional codes (AGCC). These sequences are obtained from sequences of transitive, self-orthogonal and self-dual algebraic geometry (AG) codes attaining the Tsfasman-Vladut-Zink bound. Furthermore, by applying the techniques of expanding, extending, puncturing, direct sum, the 〈u|u+ v〉 construction and the product code constru...

متن کامل

Constructions of MDS-convolutional codes - Information Theory, IEEE Transactions on

Maximum-distance separable (MDS) convolutional codes are characterized through the property that the free distance attains the generalized Singleton bound. The existence of MDS convolutional codes was established by two of the authors by using methods from algebraic geometry. This correspondence provides an elementary construction of MDS convolutional codes for each rate and each degree . The c...

متن کامل

Convolutional codes from unit schemes

Algebraic methods for the construction, design and analysis of series of convolutional codes using row or block structures of unit schemes are developed. The general methods lead to the construction and analysis of series and infinite series of types of convolutional codes and of codes with specific properties. Explicit examples are given and properties may be shown algebraically. Algebraic dec...

متن کامل

LDPC Convolutional Codes Based on Permutation Polynomials over Integer Rings

A novel algebraic construction technique for LDPC convolutional codes (LDPCCCs) based on permutation polynomials over integer rings is presented. The underlying elements of this construction technique are graph automorphisms and quasi-cyclic (QC) codes. The algebraic structure of the obtained LDPCCCs, their encoding and decoding are discussed. These new codes have a special structure, which is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1612.07157  شماره 

صفحات  -

تاریخ انتشار 2016